Absorption (physical)
|
A physical or chemical phenomenon or a process in which atoms, molecules, or ions enter some bulk phase - gas, liquid or solid material. This is a different from Adsorption, since the molecules are taken up by the volume, not by surface.
|
Adsorption
|
A process that occurs when a gas or liquid solute accumulates on the surface of a solid or a liquid (adsorbent), forming a film of molecules or atoms (the adsorbate). Most industrial adsorbents fall into one of three classes: 1. Oxygen-containing compounds (e.g.silica gel and zeolites 2. Carbon-based compounds (e.g. activated carbon and graphite) 3. Polymer-based compounds
|
For example, by growing larger particles around smaller seed particles.
|
Advection
|
A transport mechanism of a substance, or a conserved property, by a fluid, due to the fluid's bulk motion in a particular direction. An example of advection is the transport of pollutants or silt in a river.
|
Angle of Repose
|
(or critical angle of repose) The minimum angle made by the inclined plane with the horizontal surface such that the body lying on the inclined plane is just at the verge of sliding down along the inclined plane. When bulk granular materials are poured onto a horizontal surface, a conical pile will form. The internal angle between the surface of the pile and the horizontal surface is known as the angle of repose and is related to the density, surface area and shapes of the particles, and the coefficient of friction of the material.
|
For example, piles of granular material.
|
Bingham Plastic
|
A viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. A common example is toothpaste, which will not be extruded until a certain pressure is applied to the tube. It then is pushed out as a solid plug.
|
Capacitance
|
The property of a device or material medium to store an electric charge as a result of an electric potential. The most common form of charge storage device is a two-plate capacitor.
|
Centrifugal Force
|
An outward force associated with rotation. Centrifugal force is one of several so-called pseudo-forces (or inertial forces), so named because, unlike real forces, they do not originate in interactions with other bodies situated in the environment of the particle upon which they act. Instead, centrifugal force originates in the rotation of the frame of reference within which observations are made.
|
Cheerio Effect
|
The tendency for small wettable floating objects to attract one another as a result of a combination of surface tension and buoyancy.
|
Coanda Effect
|
The tendency of a fluid jet to stay attached to an adjacent suitably shaped curved surface. Also applies to powdered solids.
|
Coffee Ring Effect
|
A pattern left by a puddle of particle-laden liquid after it evaporates. Named after the characteristic ring-like deposit along the perimeter of a spill of coffee. The pattern is due to capillary flow induced by the differential evaporation rates across the drop: liquid evaporating from the edge is replenished by liquid from the interior. The resulting edgeward flow can carry nearly all the dispersed material to the edge.
|
Colloid
|
A type of chemical mixture where one substance is dispersed evenly throughout another. The particles of the dispersed substance are only suspended in the mixture, unlike a solution, where they are completely dissolved within. This occurs because the particles in a colloid are larger than in a solution - small enough to be dispersed evenly and maintain a homogenous appearance, but large enough to scatter light and not dissolve.
|
Convection
|
The movement of molecules within fluids (i.e. liquids, gases) and rheids. One of the major modes of heat transfer and mass transfer. Convective heat and mass transfer take place through both diffusion (random Brownian motion) and by advection (transport by the larger-scale motion of currents). Note that a common use of the term convection refers specifically to heat transfer by convection, as opposed to convection in general.
|
By first dispersing the divided solid in a fluid (liquid or gas).
|
Crystallisation
|
The (natural or artificial) process of formation of solid crystals precipitating from a identical solution or melt, or more rarely deposited directly from a gas. Crystallisation is also a chemical solid-liquid separation technique, in which mass transfer of a solute from the liquid solution to a pure solid crystalline phase occurs.
|
Electret
|
An Electret is a dielectric material that has a quasi-permanent electric charge or dipole polarisation. An electret generates internal and external electric fields, and is the electrostatic equivalent of a permanent magnet.
|
Electric Arc
|
An electrical breakdown of a gas which produces an ongoing plasma discharge, resulting from a current flowing through normally nonconductive media such as air
|
If the divided solid carries an electric charge.
|
Electric Field
|
The space surrounding an electric charge or in the presence of a time-varying magnetic field has a property called an electric field (that can also be equated to electric flux density). This electric field exerts a force on other electrically charged objects.
|
Electrodeposition
|
The process of using electrical current to reduce cations of a desired material from a solution and coat a conductive object with a thin layer of the material, such as a metal. Primarily used for depositing a layer of material to bestow a desired property (e.g., abrasion and wear resistance, corrosion protection, lubricity, aesthetic qualities, etc.) to a surface that otherwise lacks that property. Another application uses electroplating to build up thickness on undersized parts.
|
Electromagnetic Induction
|
The generation of electromotive force (EMF) in a current-carrying conductor exposed to a changing magnetic field
|
Electrostatic Induction
|
A redistribution of electrical charge in an object, caused by the influence of nearby charges. Electrostatic generators, such as the Wimshurst machine, the Van de Graaff generator and the electrophorus, use this principle. Electrostatic induction should not be confused with electromagnetic induction; both are often referred to as 'induction'.
|
Electrostatics
|
The phenomena arising from stationary or slowly moving electric charges
|
Erosion
|
The process of weathering and transport of solids (sediment, soil, rock and other particles) in the natural environment or their source and deposits them elsewhere. It usually occurs due to transport by wind, water, or ice; by down-slope creep of soil and other material under the force of gravity; or by living organisms, such as burrowing animals, in the case of bioerosion.
|
Faraday Wave
|
(or Faraday Ripples) Nonlinear standing waves that appear on liquids enclosed by a vibrating receptacle. When the vibration frequency exceeds a critical value, the flat hydrostatic surface becomes unstable. The waves can take the form of stripes, close-packed hexagons, or even squares or quasiperiodic patterns.
|
Faraday waves are used as a liquid-based template for directed assembly of microscale materials including soft matter, rigid bodies and biological entities.
|
Ferromagnetism
|
The mechanism by which certain materials (such as iron) form permanent magnets and/or exhibit strong interactions with magnets. Responsible for commonly observed magnetism phenomena, e.g. 'fridge magnets. A material is 'ferromagnetic' only if all its magnetic ions add a positive contribution to the net magnetisation. If some of them subtract from the net magnetisation (i.e. are partially anti-aligned), then the material is 'ferrimagnetic'.
|
Flocculation
|
A process of contact and adhesion whereby the particles of a dispersion form larger-size clusters.
|
Forced Convection
|
Heat advection by a fluid which is not due to the natural forces of buoyancy induced by heating. In forced heat convection, transfer of heat is due to movement in the fluid which results from many other forces, such as (for example) a fan or pump.
|
Fractal Forms
|
A fractal is generally 'a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole,' a property called self-similarity. A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion.
|
Free Convection
|
Movement of molecules of fluids (or gases) dues to density differences in the fluid (or gas) occurring due to temperature gradients.
|
Free Surface Effect
|
One of several mechanisms where a craft can become unstable and roll-over (capsize). It refers to the tendency of liquids — and of aggregates of small solid objects, like seeds, gravel, or crushed ore which can act as liquids — to move in response to changes in the attitude of a craft's cargo holds, decks, or liquid tanks in reaction to operator-induced motions (or sea states caused by waves & wind acting upon the craft).
|
Gel
|
A gel is a solid, jelly-like material that can have properties ranging from soft and weak to hard and tough. Gels are defined as a substantially dilute crosslinked system, which exhibits no flow when in the steady-state. By weight, gels are mostly liquid, yet they behave like solids due to a three-dimensional crosslinked network within the liquid. It is the crosslinks within the fluid that give a gel its structure (hardness) and contribute to stickiness (tack).
|
Gravitation
|
A natural phenomenon by which objects with mass attract one another. In everyday life, gravitation is most commonly thought of as the agency which lends weight to objects with mass.
|
Groove
|
A long and narrow indentation built into a material, generally for the purpose of allowing another material or part to move within the groove and be guided by it.
|
Inertia
|
The resistance of any physical object to a change in its state of motion or rest. It is proportional to an object's mass.
|
Lorentz Force
|
The force on a point charge due to electromagnetic fields. When a wire carrying an electrical current is placed in a magnetic field, each of the moving charges, which comprise the current, experiences the Lorentz force, and together they can create a macroscopic force on the wire (sometimes called the Laplace force).
|
Magnetic Field
|
A vector field which surrounds magnets and electric currents, and is detected by the force it exerts on moving electric charges and on magnetic materials. When placed in a magnetic field, magnetic dipoles tend to align their axes parallel to the magnetic field. Magnetic fields also have their own energy with an energy density proportional to the square of the field intensity.
|
Magnetism
|
One of the phenomena by which materials exert attractive or repulsive forces on other materials. Some well-known materials that exhibit easily detectable magnetic properties (called magnets) are nickel, iron, cobalt, and their alloys; however, all materials are influenced to greater or lesser degree by the presence of a magnetic field.
|
Metastability
|
A general scientific concept which describes states of delicate equilibrium. A system is in a metastable state when it is in equilibrium (not changing with time) but is susceptible to fall into lower-energy states with only slight interaction. It is analogous to being at the bottom of a small valley when there is a deeper valley close by
|
Nucleation
|
The extremely localised budding of a distinct thermodynamic phase. Some examples of phases that may form via nucleation in liquids are gaseous bubbles, crystals or glassy regions. Creation of liquid droplets in saturated vapor is also characterized by nucleation. Most nucleation processes are physical, rather than chemical, but a few exceptions do exist (e.g. electrochemical nucleation).
|
Ostwald Ripening
|
An observed phenomenon in solid solutions or liquid sols that describes the change of an inhomogeneous structure over time, i.e., small crystals or sol particles dissolve, and redeposit onto larger crystals or sol particles. Occurs because larger particles are more energetically favored than smaller particles. This stems from the fact that molecules on the surface of a particle are energetically less stable than the ones in the interior. Ostwald ripening is also observed in liquid-liquid systems, causing diffusion of monomers (i.e. individual molecules or atoms) from smaller droplets to larger droplets due to greater solubility of the single monomer molecules in the larger monomer droplets.
|
Example: the re-crystallization of water within ice cream which gives old ice cream a gritty, crunchy texture. Larger ice crystals grow at the expense of smaller ones within the ice cream, creating a coarser texture.
|
Photophoresis
|
The phenomenon that small particles suspended in gas (aerosols) or liquids (hydrocolloids) starts to migrate when illuminated by a sufficiently intense beam of light. The existence of this phenomenon is owed to a non-uniform distribution of temperature of an illuminated particle in a fluid medium.
|
Physical Containment
|
Partial or complete enclosure of an object or substance by some physical medium, typically for the purpose of protection or restriction of movement.
|
Potential Well
|
The region surrounding a local minimum of potential energy. Energy held in a potential well is unable to convert to another type of energy (kinetic energy in the case of a gravitational potential well) because it is captured in the local minimum of a potential well and so may not proceed to the global minimum of potential energy, as it would naturally tend to due to entropy.
|
Precipitation
|
The formation of a solid in a solution or inside another solid during a chemical reaction or by diffusion in a solid.
|
Pressure Gradient
|
A fluid (gas or liquid) subject to a pressure gradient results in a net force that is directed from high to low pressure (the 'pressure gradient force').
|
In the case of a divided solid dispersed in a fluid.
|
Rayleigh-Bénard Convection
|
Convection cells that appear spontaneously in a liquid layer when heat is applied from below.
|
For a divided solid dispersed in a fluid.
|
Sedimentation
|
The motion of molecules in solutions or particles in suspensions in response to an external force such as gravity, centrifugal acceleration or electromagnetism. Sedimentation may pertain to objects of various sizes, ranging from suspensions of dust and pollen particles to cellular suspensions to solutions of single molecules such as proteins and peptides.
|
Settling
|
The process by which particulates settle to the bottom of a liquid and form a sediment. Particles that experience a force, either due to gravity or due to centrifugal motion will tend to move in a uniform manner in the direction exerted by that force. For gravity settling, this means that the particles will tend to fall to the bottom of the vessel, forming a slurry at the vessel base.
|
Solvation
|
(commonly called dissolution) The process of attraction and association of molecules of a solvent with molecules or ions of a solute. As ions dissolve in a solvent they spread out and become surrounded by solvent molecules. The bigger the ion, the more solvent molecules are able to surround it and the more it becomes solvated.
|
Sorption
|
The action of both absorption and adsorption taking place simultaneously, i.e. the effect of gases or liquids being incorporated into a material of a different state and adhering to the surface of another molecule. Absorption is the incorporation of a substance in one state into another of a different state (e.g., liquids absorbed by solid or gas absorbed by liquid). Adsorption is the physical adherence or bonding of ions and molecules onto the surface of another molecule.
|
Suction
|
The flow of a fluid into a partial vacuum, or region of low pressure. The pressure gradient between this region and the ambient pressure will propel matter toward the low pressure area.
|
Supersaturation
|
A solution that contains more of the dissolved material than could be dissolved by the solvent under normal circumstances. It can also refer to a vapour of a compound that has a higher (partial) pressure than the vapour pressure of that compound.
|
Suspension
|
A heterogeneous fluid containing solid particles that are sufficiently large for sedimentation. Usually they must be larger than 1 micrometer. The internal phase (solid) is dispersed throughout the external phase (fluid - which may be liquid or gas) through mechanical agitation, with the use of certain excipients or suspending agents.
|
Thermophoresis
|
(also called thermodiffusion or Soret Effect) The effect of temperature gradient on multicomponent (or isotopic) mixtures of particles (i.e. particle movement from hotter to colder regions or vice versa). Regarded as 'positive' when molecules move from hot to cold and 'negative' when the reverse is true. Typically the heavier/larger species in a mixture exhibits positive behavior while the lighter/smaller species exhibit negative.
|
A thermal precipitator is an instrument that collects aerosol particles using thermophoresis to deposit the particles onto a surface. It employs a heated element, such as a wire, and a collection surface. Aerosol passing between the heated element and the cooler surface will be driven to deposit on the surface.
|
Triboelectric Effect
|
A type of contact electrification in which certain materials become electrically charged after they come into contact with another different material and are then separated (such as through rubbing). The polarity and strength of the charges produced differ according to the materials, surface roughness, temperature, strain, and other properties.
|
For example, the attraction of particles to an object carrying a staic electric charge generated by the Triboelectric Effect
|
Vortex Ring
|
A torus shaped vortex in a fluid i.e. a region where the fluid mostly spins around an imaginary axis line that forms a closed loop. The dominant flow in a vortex ring is said to be toroidal, more precisely poloidal. Within a stationary body of fluid, a vortex ring can travel for relatively long distance, carrying the spinning fluid with it.
|
In the case of a divided solid dispersed in a fluid, e.g. a smoke ring.
|